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This paper presents a family of exact solutions for quasi-one-dimensional, transient
acoustic wave propagation in ducts with mean temperature and area variations in the
absence of mean #ow. These solutions are obtained using a transformation of the spatial and
acoustic variables in a manner suggested by the WKB approximation. Exact travelling
wave-type solutions are obtained for a class of temperature and area pro"les. These
solutions di!er from the classical travelling wave solution, however, in that the acoustic
pressure and velocity are not algebraically related by the local value of the acoustic
impedance, oN (x)cN (x). Although these solutions resemble the approximate, &&high frequency'',
WKB form of solution of the wave equation, they have the interesting property that they are
exact, regardless of the scale of the acoustic disturbance relative to that of the inhomogeneity.

( 2001 Academic Press
1. INTRODUCTION

This paper presents a family of exact solutions for acoustic wave propagation in ducts with
mean temperature and cross-sectional area variations. Such solutions are of interest
because of the wide variety of applications involving acoustic wave propagation in
inhomogeneous or non-constant area ducts, e.g., in horn loudspeakers, automobile exhaust
systems, or combustors.

Attention is restricted in this paper to quasi-one-dimensional acoustic wave propagation.
Even in this greatly simpli"ed situation, however, there does not currently exist an exact,
general solution for the acoustic "eld. As such, theoretical investigations have primarily
sought either exact solutions for ducts with prescribed temperature or area variations or
approximate solutions. For example, the Kinsler et al. acoustic text [1] or the paper by
Eisenberg and Kao [2] present several exact solutions for harmonic wave propagation in
constant temperature ducts with certain area pro"les. In a similar manner, Sujith et al. [3]
and Kumar and Sujith [4] present exact solutions for inhomogeneous, constant area ducts
with speci"ed temperature pro"les. In addition, a few solutions have been obtained
incorporating mean #ow [2] and dissipative [5] a!ects. Finally, Dokumaci [6] and
Cummings [7] have developed approximate solutions using WKB-type methods that are
0022-460X/01/090705#11 $35.00/0 ( 2001 Academic Press



Figure 1. Simpli"ed description of wave propagation in an inhomogeneous, non-constant area duct.
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valid when the scale of the acoustic wavelength is small relative to that over which the area
variation or inhomogeneity occurs [7, 8].

Essentially all of the available exact solutions of the wave equation in non-constant
temperature or area ducts assume harmonic wave propagation, however. Relatively few
solutions are known for general transient wave propagation. Of course, a formal transient
solution of these frequency domain solutions could be obtained by determining their inverse
Fourier transform. However, little insight into the characteristics of the wave "eld can be
obtained from the resultant solutions, which generally contain integrals over an in"nity of
frequencies.

This paper presents a family of exact, explicit solutions for transient wave propagation in
non-constant temperature and area ducts. It is organized in the following manner: the
following section gives a brief background on wave propagation in inhomogeneous ducts
and describes approximate WKB-type solutions of the wave equation. Then, using
transformations suggested by the time domain analog of the approximate WKB solutions
of the wave equation, the solutions section derives a family of exact travelling wave-type
solutions for the acoustic pressure and velocity.

2. BACKGROUND

The acoustic "eld in a homogeneous, constant area duct can be described by the
superposition of rightward and leftward propagating plane waves, f (t!x/c) and g (t#x/c)
respectively. The functions f and g are arbitrary and are determined by the initial or
boundary conditions. If these waves impinge on a discontinuous area or gas property
change, they are partially re#ected and partially transmitted. If the area or gas property
change smoothly, the acoustic "eld can be considerably more complex. A convenient way of
thinking about the resultant acoustic "eld is to consider it as the result of a large number of
re#ections and transmissions in a duct composed of a series of small discontinuities
attached to each other; see Figure 1. As shown in the "gure, a wave going through a smooth
change in conditions undergoes a series of in"nitesimal re#ections and transmissions so that
its "nal shape is distorted. Thus, a description of the acoustic "eld as a superposition of two
plane waves independently propagating in opposite directions is, in general, not adequate,
because a wave propagating to the left continuously excites &&re#ected'' rightward
propagating waves and vice versa, i.e., the two waves propagating in opposite directions are
coupled [6].
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Such an approximate description of the acoustic "eld is quite accurate, however, if the gas
properties or duct area changes occur over scales that are long relative to that of the
disturbance. In this case, the duct area or gas properties &&look'' uniform to the wave, so that
re#ections are negligible. Neglecting these re#ections altogether is the essence of
&&high-frequency'' ray or WKB-type approximations [8]. In a one-dimensional context,
these approximations describe the wave "eld as independently propagating waves whose
local amplitudes vary in order to conserve the wave's energy #ux. For example, since the
energy #ux in a travelling wave is given by I(x, t)"p@(x, t)u@(x, t)A(x), the approximate
WKB solution shows that the amplitude of a rightward travelling wave of the form
f (t!x/cN ) is progressively rescaled in the following manner:

p@(x, t)J
f (t!x/cN )
A1@2(x)

, u@(x, t)J
1

oN cN
f (t!x/cN )
A1@2(x)

. (1)

Equation (1) can be generalized to situations where the mean density, oN (x), and/or speed of
sound, cN (x), of the medium also change slowly relative to the scale of the acoustic
disturbance. Assuming that the acoustic pressure and velocity are related by the acoustic
impedance, oN (x)cN (x) (as they are in plane travelling waves), the disturbance evolves as

p@(x, t)JA
oN (x)cN (x)

A(x) B
1@2

f At!P
x

0

dm
cN (m)B , u@(x, t)JA

oN (x)cN (x)

A(x) B
1@2 f (t!:x

0
dm/cN (m))

o6 (x)cN (x)
. (2)

Note that for a perfect gas:

(o(x)c(x))1@2"A
cpN 2
R¹M B

1@4
. (3)

Assuming that there is no ambient #ow, the mean pressure, pN , is constant. Assuming for
simplicity that c and R are constants as well, leads to the following modi"ed form of
equation (2) that relates the amplitude of the acoustic pressure or velocity to the local area
or temperature:

p@(x, t)J
f (t!:x

0
dm/cN (m))

A(x)1@2¹M 1@4(x)
, u@(x, t)J¹M 1@4(x)

f (t!:x
0

dm/cN (m))

A1@2(x)
. (4)

It should be emphasized that equations (1, 2) and (4) are approximate solutions that are
valid only when the length scale of the acoustic disturbance is small relative to that of the
gas property or area change. It will be shown in the next section, however, that exact
solutions of the form shown in equation (4) exist for a family of temperature and area
pro"les.

3. A FAMILY OF EXACT SOLUTIONS

For completeness, we begin with the derivation of the wave equation for a variable area
duct with a mean temperature gradient and negligible mean #ow. Assuming a perfect,
inviscid and non-heat conducting gas, the quasi-one-dimensional continuity, momentum,
energy and state equations can be written as [9]

continuity: A
Lo
Lt

#

L(ouA)

Lx
"0, (5)
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momentum: oC
Lu

Lt
#u

Lu

LxD"!

Lp

Lx
, (6)

energy: A
Lp

Lt
#Au

Lp

Lx
#cp

L (Au)

Lx
"0. (7)

These quasi-one-dimensional equations approximately describe wave propagation in ducts
where area variations occur over length scales that are long relative to that of the acoustic
disturbance. Writing each dependent variable as the sum of a steady and time-dependent
component, i.e., u"u@(x, t), p"pN (x)#p@(x, t), o"oN (x)#o@(x, t), and substituting these
expressions into equations (5}7) yields a system of equations for the steady and unsteady
variables. The resulting linearized acoustic momentum and energy equations are

oN
Lu@
Lt

"!

Lp@
Lx

,
A

cpN
Lp@
Lt

#

L(u@A)

Lx
"0. (8, 9)

Utilizing the perfect gas relation,

1

oN
doN
dx

#

1

¹M
d¹M
dx

"0,

and combining equations (8) and (9), yields the following wave equations for the acoustic
velocity and pressure:

L2p@
Lx2

#C
1

A

dA

dx
#

1

¹M
d¹M
dxD

Lp@
Lx

!

1

cN 2
L2p@
Lt2

"0, (10)

L2u@
Lx2

#

1

A

dA

dx

Lu@
Lx

#u@
d

dx C
1

A

dA

dxD!
1

cN 2
L2u@
Lt2

"0, (11)

where cN"(cR¹M )1@2.
The ensuing analysis determines the conditions under which equations (10) and (11)

admit exact travelling wave solutions.

3.1. EXACT TRAVELLING WAVE SOLUTIONS FOR THE ACOUSTIC PRESSURE

First, we determine the conditions under which the wave equation admits exact travelling
wave solutions for the acoustic pressure. Motivated by the discussion in the background
section and the form of equation (4), we introduce the transformations

xJ "P
x

0

dm
cN (m)

, p@(x, t)"U
p
(A(x), ¹M (x)) pJ @(xJ , t). (12, 13)

Note that the transformed spatial variable, xJ , is the transit time for a disturbance to
propagate through a distance x. The acoustic pressure is scaled by a function of the local
area and temperature, U

p
(A(x), ¹(x))"U

p
(x). Note that the &&high-frequency'' solutions in

Equation (4) suggest de"ning this function as U
p
(x)"A~1@2(x)¹~1@4(x). While the analysis

below will show that these area and temperature pro"les are the only ones that admit
travelling wave solutions, the more general form in equation (13) will be retained
initially.
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Substituting equations (12) and (13) into the wave equation for the pressure, equation
(10), yields the transformed wave equation

C
L2pJ @
LxJ 2

!

L2pJ @
Lt2 D

U
p

cR¹M
#

LpJ @
LxJ

1

c C2
dU

p
dx

#

1

2¹M
d¹M
dx

U
p
#

1

A

dA

dx
U

pD
#pJ @C

d2U
p

dx2
#C

1

¹M
d¹M
dx

#

1

A

dA

dxD
dU

p
dx D"0. (14)

This equation reduces to the classical wave equation, L2pJ @/LxJ 2!L2pJ @/Lt2"0 (that
admits travelling wave solutions of the form pJ @"f (t!xJ )#g(t#xJ )) when the following
relations hold:

d2U
p

dx2
#

1

A(x)¹M (x)

d(A(x)¹M (x))

dx

dU
p

dx
"0, (15)

2
dU

p
dx

#A
1

A(x)

dA(x)

dx
#

1

2¹(x)

d¹M (x)

dx BU
p
"0. (16)

Integrating equation (16) yields

U
p
(x)"

cons tan t

A1@2(x)¹M 1@4 (x)
. (17)

Equation (17) explicitly shows that the only solutions for the area and temperature
pro"les are those previously given in equation (4) for the &&high-frequency'' approximation.
However, not every temperature and area pro"le admits travelling wave solutions because
they must also satisfy equation (15). Integrating this equation once and substituting into
equation (17) yields the relation (dU

p
/dx) A(x)¹M (x)"cons tan t which can be written as

d(A~1@2(x)¹M ~1@4(x))

dx
A(x)¹M (x)"cons tan t. (18)

Because equation (18) is a single di!erential equation for two quantities, A(x) and ¹(x), there
exists an in"nite number of temperature and area pro"les that satisfy it. For example,
travelling wave solutions of the wave equation exist for any arbitrary temperature pro"le,
provided the area pro"le satis"es equation (18), i.e., solving equation (18) for A(x), given an
arbitrary ¹ (x), yields

A(x)"
(C

2
!C

1
:x
0

dx@/J¹(x@))2

J¹(x)
, (19)

where C
1

and C
2

are arbitrary constants. In the same manner, solving equation (18) for
¹(x), given an arbitrary A(x), yields:

¹(x)"
(C

2
#C

1
:x
0

A(x@) dx@)4@3
A2(x)

. (20)

In the special case where the area is constant, the solution of equation (18) for ¹(x) is given
by

¹M (x)

¹
0

"(1#a
p
x)np , (21)



Figure 2. Two possible solutions for the relationship between the temperature (n
p
) and area (m

p
) variation

exponents given by equation (21).
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where n
p
"4/3 and a

p
is an arbitrary constant. In a constant temperature duct, the

analogous solution for the area is

A(x)

A
0

"(1#a
p
x)mp, (22)

where m
p
"0 or 2. Note that the latter case corresponds to wave propagation in a conical

duct and thus represents a solution equivalent to spherical wave propagation. Thus,
equation (22) shows that only uniform and conical ducts admit non-dispersive travelling
wave solutions for the acoustic pressure.

A similar family of exponential pro"les exists in the more general case where both
temperature and area vary simultaneously. It can be veri"ed by direct substitution that
equations (21) and (22) exactly satisfy equation (18) when n

p
and m

p
are related by either of

the relationships

n
p
"!2m

p
or n

p
"!(2m

p
!4)/3. (23)

Figure 2 plots the relationship between the exponents m
p
and n

p
in equation (23). Note that

two possible solutions exist for m
p

given an arbitrary n
p

(and vice versa). Note also that
n
p

and m
p

are inversely related in both solutions, i.e., if the temperature increases with x,
then the area must decrease, and vice versa. This trend can be understood by energy
conservation considerations and equation (17).

Thus, for the temperature and area pro"les given by any of equations (19}23), the exact
solution of the wave equation (10) is described by

p@(x, t)"
f (t!:x

0
dm/cN (m))#g(t#:x

0
dm/cN (m))

A1@2(x)¹M 1@4(x)
. (24)

Substituting equation (24) into the linearized momentum equation (8) yields the following
solution for the corresponding acoustic velocity "eld:

u@(x, t)"
1

oN (x)cN (x) C
( f (f)!g(g))

A1@2(x)¹M 1@4(x)
!cN (x)

d

dxA
1

A1@2(x)¹1@4(x)BP( f (f) df#g (g) dg)D , (25)



Figure 3. Evolution of a Gaussian pulse through a non-uniform temperature, constant area duct. Curves
denoted A}E denote waveform at times t"0)25/a
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Figure 4. Evolution of a Gaussian pulse through a non-uniform area, constant temperature duct. Curves
denoted A}E denote waveform at times t"0)25/a
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where

f"t!P
x

0

dm
cN (m)

and g"t#P
x

0

dm
cN (m)

. (26)

It is important to note that equation (25) does not have the same form as the
&&high-frequency'' travelling wave solution in equation (4) because the pressure and velocity
in each wave are not related algebraically by the local acoustic impedance, oN (x)cN (x).

The results of sample calculations illustrating the evolution of a pulse through
non-uniform temperature and area ducts are shown in Figures 3 and 4. These "gures plot
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the evolution of a rightward propagating pulse whose initial shape is described by
f (t)"exp(!(t/q)2) at x"0 through a constant area, varying temperature (solution given
by equations (21) and (24)) and constant temperature, varying area duct (solution given by
equations (22) and (24)). Figure 3 illustrates that temperature variations exert two e!ects
upon the wave. First, the wave shape changes because di!erent parts of the wave propagate
at di!erent speeds. Second, the wave amplitude decreases because of the change in
impedance. In contrast, Figure 4 shows that in a constant temperature, varying area duct,
the wave shape remains the same, although the amplitude steadily decreases in increasing
direction of propagation because of the increasing duct area.

It will be shown next that an analogous family of exact travelling wave solutions also
exists for the acoustic velocity.

3.2. EXACT TRAVELLING WAVE SOLUTIONS FOR THE ACOUSTIC VELOCITY

An additional family of exact solutions can be obtained by transforming the acoustic
velocity in an analogous manner as done in equation (13):

u@(x, t)"U
u
(A(x), ¹(x)) uJ @(xJ , t). (27)

Substituting equations (12) and (27) into the wave equation for acoustic velocity, i.e.
equation (11), yields

U
u

cN 2 C
L2uJ @
LxJ 2

!

L2uJ @
Lt2 D#

1

cN
LuJ @
LxJ C2

dU
u

dx
#C

1

A

dA

dx
!

1

2¹M
d¹M
dx DU

uD
#uJ @C

d2U
u

dx2
#

d

dx CUu

1

A

dA

dxDD"0. (28)

This equation reduces to the classical wave equation, L2uJ @/LxJ 2!L2uJ @/Lt2"0, when the
following relations hold:

U
u
(x)"

cons tan t*¹M 1@4(x)

A1@2(x)
,

dU
u

dx
#

1

A

dA

dx
U

u
"cons tan t . (29, 30)

In analogy to equation (18), there exists an in"nite number of temperature and area pro"les
satisfying equation (30). Solving equation (30) for A(x), given an arbitrary ¹(x), yields

A(x)"
1

J¹(x)

1

(C
2
!C

1
:x
0

(dx@/J¹(x@))2
, (31)

where C
1

and C
2

are arbitrary constants. In the same manner, solving for ¹(x), given an
arbitrary A(x), yields

¹(x)"
(C

2
#C

1
:x
0

A(x@) dx@)4
A2(x)

. (32)

In the special case where the area is constant, the unique solution of equation (30) for ¹(x) is
given by

¹M (x)

¹
0

"(1#a
u
x)nu , (33)



Figure 5. Two possible solutions for the relationship between the temperature (n
u
) and area (m

u
) variation

exponents given by equation (31).
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where n
u
"0 or 4 and a

u
is an arbitrary constant. In a constant temperature duct, the

analogous solution for the area is

A(x)

A
o

"(1#a
u
x)mu , (34)

where m
u
"0 or !2.

Analogously to equation (23), equations (33) or (34) more generally satisfy equation (30)
when the exponents m

u
and n

u
are related by either of the expressions

n
u
"!2m

u
or n

u
"2m

u
#4. (35)

The relationship between the exponents m
u
and n

u
in equation (31) is presented graphically

in Figure 5. Similar to the relationships illustrated in Figure 3, two possible solutions exist
for m

u
given an arbitrary n

u
(and vice versa). In contrast to Figure 3, however, note that these

two solutions exhibit opposite trends. That is, for the n
u
"!2m

u
solution, an increase in

temperature is accompanied by a decrease in area, while the opposite trend is exhibited by
the n

u
"2m

u
#4 solution.

For the temperature and area pro"les given by equations (31}35), the acoustic velocity is
given by

u@(x, t)"
¹M 1@4(x)

A1@2(x)
f At!P

x

0

dm
cN (m)B!gAt#P

x

0

dm
cN (m)B. (36)

Substituting equation (36) into the acoustic energy equation (9) yields the following solution
for the corresponding acoustic pressure "eld:

p@"oN (x)cN (x)C
¹M 1@4
A1@2

( f (f)#g (g))!
cN
A

d

dx
(A1@2¹M 1@4)P ( f (f) df!g(g) dg)D , (37)

where f and g are given in equation (26). Again, note that the pressure and velocity in each
wave are not related algebraically by the acoustic impedance, oN (x)cN (x).
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4. CONCLUSIONS

This paper presents a family of exact travelling wave-type solutions in ducts with mean
temperature and area variations. These solutions resemble the approximate WKB solutions
of the wave equation in that they are essentially travelling waves whose shapes are distorted
by sound speed variations (because di!erent parts of the wave travel at di!erent speeds) and
whose amplitudes are scaled by the local duct area and acoustic impedance. These solutions
have the interesting property that they resemble the WKB solutions, but exactly satisfy the
wave equation regardless of the scale of the acoustic disturbance relative to the scale of the
inhomogeneity. These solutions di!er from the approximate WKB solutions, however, in
that the acoustic pressure and velocity in the travelling waves are not algebraically related
by the local value of the acoustic impedance, oN (x)cN (x).

REFERENCES

1. L. KINSLER, A. FREY, A. COPPENS and J. SANDERS 1982 Fundamentals of Acoustics. New York:
John Wiley and Sons.

2. N. EISENBERG and T. KAO 1969 Journal of the Acoustical Society of America 49, 169}175.
Propagation of sound through a variable area duct with a steady compressible #ow.

3. R. I. SUJITH, G. A. WALDHERR and B. T. ZINN 1995 Journal of Sound and <ibration 184, 389}402.
An exact solution for one-dimensional acoustic "elds in ducts with an axial temperature gradient.

4. B. MANOJ KUMAR and R. I. SUJITH 1998 Journal of <ibration and Acoustics. 120, 965}969. Exact
solution for one-dimensional acoustic "elds in ducts with polynomial mean temperature pro"les.

5. B. KARTHIK, R. MOHANRAJ, R. RAMAKRISHNAN and R. I. SUJITH 1999 Journal of the Acoustical
Society of America 106, 2391}2395. Exact solution for sound propagation in ducts with an axial
mean temperature gradient and particulate damping.

6. E. DOKUMACI 1998 Journal of Sound and <ibration 217, 853}867. An approximate analytical
solution for plane sound wave transmission in inhomogeneous ducts.

7. A. CUMMINGS 1977 Journal of Sound and <ibration 51, 55}67. Ducts with axial temperature
gradients: an approximate solution for sound transmission and generation.

8. D. G. CRIGHTON, A. P. DOWLING, J. E. FFOWCS WILLIAMS, M. HECKL and F. G. LEPPINGTON

1992 Modern Methods in Analytical Acoustics. London: Springer-Verlag.
9. P. A. THOMPSON 1972 Compressible Fluid Dynamics, pp. 198}201. U. S. A.: McGraw-Hill, Inc.,

Chapter 4)10.

APPENDIX A: NOMENCLATURE

A duct cross-sectional area
c speed of sound
f travelling wave propagating in #x direction
g travelling wave propagating in !x direction
m area variation exponent, see equations (22) and (34)
n temperature variation exponent, see equations (21) and (33)
p pressure
R gas constant
t time
¹ temperature
u velocity
x spatial co-ordinate
c ratio of speci"c heats
g retarded time
o density
U temperature and area variation function, see equations (13) and (27)
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m integration variable for axial distance
f retarded time

Subscripts and superscripts

( )@ #uctuating quantity
( 1 ) mean quantity
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